Set	theory -	Winter	semester	2016-17
-----	----------	--------	----------	---------

Problems	Prof. Peter Koepke
Series 12	Dr. Philipp Schlicht

Problem 45 (2 points). Suppose that U is a κ -complete ultrafilter on a cardinal κ and $f: \kappa \to \alpha$ is a function for some $\alpha < \kappa$. Show that there is a set $A \in U$ such that $f \upharpoonright A$ is constant.

Problem 46 (2 points). Suppose that μ is a measure on a set X. Suppose that $\langle X_i | i < \alpha \rangle$ is a sequence of disjoint subsets of X such that $\mu(X_i) > 0$ for each $i < \alpha$. Show that α is countable.

Problem 47 (6 points). (1) Suppose that for each $\xi < \omega_1, f_{\xi}: \omega \to \omega_1$ is a function with $\xi \subseteq \operatorname{ran}(f)$. We define

 $A_{\alpha,n} = \{\xi < \omega_1 \mid f_{\xi}(n) = \alpha\}$

for all $n \in \omega$ and $\alpha < \omega_1$. Prove the following properties.

- (a) If $n \in \omega$ and $\alpha < \beta < \omega_1$, then $A_{\alpha,n} \cap A_{\beta,n} = \emptyset$.
- (b) For each $\alpha < \omega_1$, the set $\omega_1 \setminus \bigcup_{n \in \omega} A_{\alpha,n}$ is at most countable.
- (2) Prove that there is no nontrivial measure on ω_1 (*Hint: use the sets* $A_{\alpha,n}$ and Problem 46).

Problem 48 (8 points). Suppose that μ is a nontrivial measure on P(X) such that $\mu(X) = 1$ and every subset Y of X with $\mu(Y) > 0$ splits, i.e. there are disjoint subsets Y_0 and Y_1 of Y with $\mu(Y_0) > 0$ and $\mu(Y_1) > 0$.

- Show that for every subset Y of X and every ε > 0, there is some n and a partition ⟨Y_i | i < n⟩ of Y such that μ(Y_i) < ε for all i < n. (Hint: use the result from the lecture about obtaining a subset with measure between ¹/₃ and ²/₃.)
- (2) Show that for every $r \in [0,1]$, there is a subset Y of X with $\mu(Y) \leq r$ and $\mu(Y) - r < \epsilon$.
- (3) Show that for every $r \in [0, 1]$, there is a subset Y of X with $\mu(Y) = r$.

Due Friday, January 27, 14:45-15:00, Plückerraum (opposite to the Hausdorffraum 1.012, Mathematik-Zentrum), in the folders at the windows.